Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38426525

RESUMO

Vapor-liquid equilibria and thermodynamic properties of saturated argon and krypton were calculated by semi-classical Monte Carlo simulations with the NpT + test particle method using ab initio potentials for the two-body and nonadditive three-body interactions. The NpT + test particle method was extended to the calculation of second-order thermodynamic properties, such as the isochoric and isobaric heat capacities or the speed of sound, of the saturated liquid and vapor by using our recently developed approach for the systematic calculation of arbitrary thermodynamic properties in the isothermal-isobaric ensemble. Generally, the results for all simulated properties agree well with experimental data and the current reference equations of state for argon and krypton. In particular, the results for the vapor pressure and for the density and speed of sound of the saturated liquid and vapor agree with the most accurate experimental data for both noble gases almost within the uncertainty of these data, a level of agreement unprecedented for many-particle simulations. This study demonstrates that the vapor-liquid equilibrium and thermodynamic properties at saturation of a pure fluid can be predicted by Monte Carlo simulations with high accuracy when the intermolecular interactions are described by state-of-the-art ab initio pair and nonadditive three-body potentials and quantum effects are accounted for.

2.
Phys Rev E ; 107(6-1): 064112, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464666

RESUMO

Molecular expressions for thermodynamic properties and derivatives of the entropy up to third order in the adiabatic grand-isochoric µVL and adiabatic grand-isobaric µpR ensembles are systematically derived using the methodology developed by Lustig for the microcanonical and canonical ensembles [J. Chem. Phys. 100, 3048 (1994)10.1063/1.466446; Mol. Phys. 110, 3041 (2012)10.1080/00268976.2012.695032]. They are expressed by phase-space functions, which represent derivatives of the entropy with respect to the chemical potential, the volume, and the Hill energy L in the µVL ensemble and with respect to the chemical potential, the pressure, and the Ray energy R in the µpR ensemble. The derived expressions are validated for both ensembles by Monte Carlo simulations for the simple Lennard-Jones model fluid at three selected state points.

3.
J Chem Phys ; 157(11): 114504, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36137797

RESUMO

Ten different thermodynamic properties of the noble gas krypton were calculated by Monte Carlo simulations in the isothermal-isobaric ensemble using a highly accurate ab initio pair potential, Feynman-Hibbs corrections for quantum effects, and an extended Axilrod-Teller-Muto potential to account for nonadditive three-body interactions. Fourteen state points at a liquid and a supercritical isotherm were simulated. To obtain results representative for macroscopic systems, simulations with several particle numbers were carried out and extrapolated to the thermodynamic limit. Our results agree well with experimental data from the literature, an accurate equation of state for krypton, and a recent virial equation of state (VEOS) for krypton in the region where the VEOS has converged. These results demonstrate that very good agreement between simulation and experiment can only be achieved if nonadditive three-body interactions and quantum effects are taken into account.

4.
Phys Rev E ; 105(6-1): 064129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854585

RESUMO

Ten different thermodynamic properties of the noble gas argon in the liquid and supercritical regions were obtained from semiclassical Monte Carlo simulations in the isothermal-isobaric ensemble using ab initio potentials for the two-body and nonadditive three-body interactions. Our results for the density and speed of sound agree with the most accurate experimental data for argon almost within the uncertainty of these data, a level of agreement unprecedented for many-particle simulations. This demonstrates the high predictive but yet unexploited power of ab initio potentials in the field of molecular modeling and simulation for thermodynamic properties of fluids.

5.
Phys Rev E ; 105(3-2): 035301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428054

RESUMO

Molecular expressions for thermodynamic properties of fluids and derivatives of the entropy up to third order in the isoenthalpic-isobaric ensemble are derived by using the methodology developed by Lustig for the microcanonical and canonical ensembles [J. Chem. Phys. 100, 3048 (1994)JCPSA60021-960610.1063/1.466446; Mol. Phys. 110, 3041 (2012)MOPHAM0026-897610.1080/00268976.2012.695032]. They are expressed in a systematic way by phase-space functions, which represent derivatives of the phase-space volume with respect to enthalpy and pressure. The expressions for thermodynamic properties contain only ensemble averages of combinations of the kinetic energy and volume of the system. Thus, the calculation of thermodynamic properties in the isoenthalpic-isobaric ensemble does not require volume derivatives of the potential energy. This is particularly advantageous in Monte Carlo simulations when the interactions between molecules are described by very accurate ab initio pair and nonadditive three-body potentials. The derived expressions are validated by Monte Carlo simulations for the simple Lennard-Jones model fluid as a test case.

6.
Phys Rev E ; 104(1-1): 014117, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412323

RESUMO

The methodology developed by Lustig for calculating thermodynamic properties in the microcanonical and canonical ensembles [J. Chem. Phys. 100, 3048 (1994)JCPSA60021-960610.1063/1.466446; Mol. Phys. 110, 3041 (2012)MOPHAM0026-897610.1080/00268976.2012.695032] is applied to derive rigorous expressions for thermodynamic properties of fluids in the grand canonical ensemble. All properties are expressed by phase-space functions, which are related to derivatives of the grand canonical potential with respect to the three independent variables of the ensemble: temperature, volume, and chemical potential. The phase-space functions contain ensemble averages of combinations of the number of particles, potential energy, and derivatives of the potential energy with respect to volume. In addition, expressions for the phase-space functions for temperature-dependent potentials are provided, which are required to account for quantum corrections semiclassically in classical simulations. Using the Lennard-Jones model fluid as a test case, the derived expressions are validated by Monte Carlo simulations. In contrast to expressions for the thermal expansion coefficient, the isothermal compressibility, and the thermal pressure coefficient from the literature, our expressions yield more reliable results for these properties, which agree well with a recent accurate equation of state for the Lennard-Jones model fluid. Moreover, they become equivalent to the corresponding expressions in the canonical ensemble in the thermodynamic limit.

7.
Phys Rev E ; 103(2-1): 023305, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736048

RESUMO

Molecular expressions for thermodynamic properties and derivatives of the Gibbs energy up to third order in the isobaric-isothermal (NpT) ensemble are systematically derived using the methodology developed by Lustig for the microcanonical and canonical ensembles [J. Chem. Phys. 100, 3048 (1994)10.1063/1.466446; Mol. Phys. 110, 3041 (2012)10.1080/00268976.2012.695032]. They are expressed by phase-space functions, which represent derivatives of the Gibbs energy with respect to temperature and pressure. Additionally, expressions for the phase-space functions for temperature-dependent potentials are provided, which, for example, are required when quantum corrections, e.g., Feynman-Hibbs corrections, are applied in classical simulations. The derived expressions are validated by Monte Carlo simulations for the simple Lennard-Jones model fluid at three selected state points. A unique result is that the phase-space functions contain only ensemble averages of combinations of powers of enthalpy and volume. Thus, the calculation of thermodynamic properties in the NpT ensemble does not require volume derivatives of the potential energy. This is particularly advantageous in Monte Carlo simulations when the interactions between molecules are described by empirical force fields or very accurate ab initio pair and nonadditive three-body potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...